
More Greed

Greedy Algorithm for Activity Selection

Suppose we have a set of activities to choose from, but some of them overlap.  We want to 

choose the largest possible set of non-overlapping activities.  In class I set up a scenario 

involving the imaginary School of Computing International Film Festival, with movies 

starting and ending at odd times.  I’ll spare you the details here and just  refer to generic 

“activities”.

A greedy algorithm always starts by sorting the objects.  In class we experimented with 

different criteria for sorting:

1.  Sort the activities by start time.  Then repeatedly choose the next activity if it doesn't 

overlap with the ones already chosen.

        This algorithm fails on this example

Task 1 2 3

Start Time 8:00 8:01 8:05

Finish Time 9:00 8:02 8:06

2.  Sort the activities by length, shortest first.  Then repeatedly choose the next activity if it 

doesn't overlap with the ones already chosen.

        This algorithm fails on this example

Task 1 2 3

Start Time 8:58 8:55 9:01

Finish Time 9:02 8:59 9:05



3.  Sort the activities by length, longest first.    Then repeatedly choose the next activity if it 

doesn't overlap with the ones already chosen.   (I didn’t even mention this idea in class – it 

seems silly – and it is.)

        This algorithm fails on this example

Task 1 2 3

Start Time 8:00 8:01 8:05

Finish Time 9:00 8:02 8:06

None of these work ... but undaunted by our repeated failures, we finally hit upon another 

alternative:

4.  Sort the activities by finish time, earliest first.  Then repeatedly choose the next activity if it

doesn't overlap with the ones already chosen.

Proof of correctness:

We will use proof by induction, applying induction to n, the number of activities.

Base case:  Let n = 1.  Clearly the algorithm will choose the only activity, thus finding the 

optimal solution.     

Assume the algorithm always finds the optimal solution when there are    n activities, where

n is some integer   1.

Let the number of activities be n+1.  Apply the algorithm (sort by finish time, and select as 

above).   Let the Greedy Algorithm solution be  = { }.  Note that  must have 

the earliest of all finish times, due to the sort.  

Step 1: We need to show that there is an optimal solution containing .  Let O be any optimal

solution, with its elements sorted by finish time.  Let O = { }   We know that 

start_time( )  finish_time( )   finish_time( ) because  has the earliest finish time of all 

the activities.  Thus O* = { } is a feasible solution, and |O*| = |O|, so O* is an 



optimal solution that contains .

Step 2:      Now we need to show that    is optimal.  By the inductive assumption,                     

{ } is an optimal (ie largest) solution to the problem of choosing activities that 

start no earlier than finish_time( ).  

Let O* be the optimal solution we constructed above, so O* =  { }. 

 Observe that  { } is also a solution to the problem of choosing activities that start 

no earlier than finish_time( ).  

Because  { } is an optimal solution to this reduced problem, we know

|{ }|    |{ }| 

Thus| |  |O*|   

Since O* is an optimal solution, |A| > |O*| is not possible, so | | = |O*|.   Thus  is an 

optimal solution, and the Greedy Algorithm finds the optimal solution whenever there are 

n+1 activities.

Therefore the Greedy Algorithm finds the optimal solution to the Activity Selection Problem 

for all sets of activities.

In class I stressed the point that even though in our proof of correctness for Greedy 

Algorithms we say “Let O be an optimal solution”, our proof does not need to actually 

construct O – we just make use of properties that all optimal solutions must have in common. 

Of course the algorithm simply constructs the set A – it never constructs some other solution 

O and swaps elements of A and O – that is just part of the proof that A is an optimal solution. 

Here’s another idea for sorting the activities:  sort the activities in order of the number of 

“overlaps” (so an activity that overlaps with two others would be sorted in front of one that 

overlaps with three others).  Now apply the Greedy algorithm exactly as described above 

(really, all Greedy algorithms look alike):  work through the sorted list and add each activity 

to the chosen set iff it doesn’t conflict with the ones already chosen.

Question:  Can you prove that this sorted order always leads to an optimal solution, or can 

you find a set of activities where this approach fails to find an optimal solution?
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